Калибровка лазерного сканера с применением материальных эталонов с объемной формой выпуклости.

Панков В.В. к.т.н., Панков С.В. к.т.н., Богородский И.Г. к.э.н., Аникин Д.А.

Введение

Патенты РФ № 2550673 «Устройство для оценки качества сварного шва», РФ № 2644617 «Мобильный сканер для определения качества поверхности сварного шва» и РФ № 2569276 «Способ оценки квалификации сварщика» информируют о разработчиках технических средств и метода определения Квалификации Сварщика (ИКС) и числового Индекса реализованы технологией 3DLD (3-Dimensional Laser Diagnostics). Оценка квалификации сварщика по технологии 3DLD включена в директивные документы международного конкурса сварщиков «Arc Cup IWC», апробирована на Всероссийских и Межрегиональных конкурсах сварщиков и опубликована в работе [1]. ИКС вычисляется по результатам лазерного сканирования профиля выпуклости сварного шва, выполненного сварщиком, и сравнением скана реального сварного шва с профилем виртуального эталонного шва, рассчитанным и хранящимся в компьютере.

Можно ли полагаться на точность скана сварного шва, полученного с применением лазерных сканеров – этот вопрос до настоящего времени авторами не был подробно рассмотрен и требует дополнительных пояснений.

Термины и определения.

Калибровка – установление зависимости между показаниями средств измерительной техники и размерами измеряемой величины.

Виртуальный эталон - формула профиля выпуклости сварного шва с граничными размерами ширины и высоты, прописанными ГОСТ.

Материальный эталон (МЭК) - стальное изделие с горизонтальной плоскостью и объемной выпуклостью, имеющей в сечении форму и

конструктивные размеры кругового сегмента с заданными значениями ширины и высоты, прописанными ГОСТ.

Предмет настоящей статьи – разработка способа калибровки лазерного сканера по материальному эталону, соответствующему форме выпуклости и размерам бездефектного сварного шва.

Размеры и форма бездефектных сварных швов должны соответствовать требованиям ГОСТов, определяющих конструктивные элементы, форму и размеры сварного шва.

Описанный ниже метод калибровки по МЭК применяется для лазерных сканеров производимых по патентам РФ № 2550673 «Устройство для оценки качества сварного шва», РФ № 2644617 «Мобильный сканер для определения качества поверхности сварного шва», моделей LSP, LSP-U, LSR и их аналогов, используемых при сканировании формы поверхностей сварных соединений, выполненных различными способами сварки плавлением. Наиболее часто применяемая разделка при сварке деталей конструкций по ГОСТ 16037-80, ГОСТ 1154-80, ГОСТ 14771-76 имеет условное обозначение С17. Конструктивные элементы, форма и размеры сварного шва приведены ниже на рис.1.

Рис. 1. Конструктивные элементы форма и размеры сварного шва ГОСТ 16037-80 условное обозначение разделки С 17

Известен метод калибровки лазерных сканеров по концевым мерам длины (КМД) или линейный метод, опубликованный в работе [2]. При выполнении линейной калибровки используются КМД по ГОСТ 9038-90 или их аналоги, имеющие только один калиброванный размер. Процесс калибровки выполняется последовательно, первоначально сканер калибруется линейно по высоте измерения, после поворота концевой меры длины вокруг своей оси на 90° и повторного сканирования, сканер калибруется по ширине измерения. Недостатком этого способа является то, что измерением является линейная величина нормируемого размера плоскопараллельными между измерительными плоскостями КМД, а поверхность сварного шва является криволинейной и пространственной (объемной), поэтому последовательная калибровка сканера по ширине и по высоте КМД не позволяет, достоверно установить взаимосвязь между показаниями сканеров, применяемых для контроля качества поверхности сварных швов, и измеряемой величиной -

формой выпуклости сварных швов и достичь поставленную цель в полном объеме.

В связи с выше сказанным, в качестве материальных эталонов, необходимых для калибровки сканера, предлагается использовать стальные пластины с горизонтальной плоскостью и объёмной выпуклостью, имеющей в сечении форму и размеры кругового сегмента с заданными значениями длины хорды и высоты выпуклости. Отметим, что длина хорды и высота выпуклости задаются в соответствие с требованиями ГОСТ. Эскизы и трехмерные изображения эталонов, используемых при калибровке с применением МЭК, приведены на рис. 2.

Рис.2. Эскизы и 3D-изображения МЭК.

а - граничные значения выпуклости: ширина е =20 мм, высота g=4 мм;

б - граничные значения выпуклости: ширина е =10 мм, высота g=3 мм.

Для определения координат точек виртуальных эталонов, с размерами выпуклости сварного шва, прописанных в ГОСТ, использовали расчетную схему и формулы, приведенные ниже по тексту. Радиус окружности находим по теореме Пифагора:

Координата центра окружности:

$$Z_C = g - R$$

Точки выпуклости виртуального эталона находим по формуле окружности в декартовых координатах:

$$X^{2} + (Z - Z_{C})^{2} = R^{2}$$

 $Z = Z_{C} + \sqrt{R^{2} - X^{2}}$

По рассчитанным значениям координат точек формы профиля виртуального эталона е=20мм, g=4мм с шагом по горизонтали 1,0 мм (рис. 3) и е=10мм, g=3мм с шагом по горизонтали 0,5 мм были изготовлены МЭК (рис. 4).

Выпукл	ость - кру	говой сеги	мент - расч	ет								
Параме	тры расче	та (можно і	менять жел	тые клетки)	Справо	очно: расче	тные параметры о	кружности;				
20,00	Ширина	выпуклост	и, мм		14,5	Радиус о	окружности					
4,00	Высота	выпуклост	и,мм		-10,5	Координ	ата центра окруж					
1,00	Шагмеж	кду точкам	и рисунка, и	им (не менее 0,01 мм)								
Профил	ь выпукл	ости:					10,0	י ז				
левая п	оловина	правая п	оловина				9,0) -				
Х	Z	X	Z				8,0) -				
0,00	4,00	0,00	4,00				7,0) -				
-1,00	3,97	1,00	3,97				6.0					
-2,00	3,86	2,00	3,86				0,0					
-3,00	3,69	3,00	3,69				5,0) -				
-4,00	3,44	4,00	3,44				4,0					
-5,00	3,11	5,00	3,11				3,0					
-6,00	2,70	6,00	2,70				2.0					
-7,00	2,20	7,00	2,20				2,0	, 1				
-8,00	1,59	8,00	1,59				1,0	0 -				
-9,00	0,87	9,00	0,87			, ,		, , ,				
-10,00	0,00	10,00	0,00	-15,00-14,00-13,00-12,00-11	1,00-10,00 -9,00 -8,00 -7,00	-6,00 -5,00 -4	4,00 -3,00 -2,00 -1,00	0,00 1,00 2,00	3,00 4,00 5,0	00 6,00 7,00 8,00	9,00 10,00 11	1,00 12,0
-11,00	0,00	11,00	0,00									

Рис. 3. Форма профиля и рассчитанные значения координат виртуального

эталона е=20мм, g=4мм.

Выпукл	ость - кру	говой сеги	мент - расч	нет						
Параме	пы расче	та (можно и	менять жег	лтые клетки)	Справо	NHO. DACAE	тные параметры окг	ужности.		
10.00					5.7	Ралиус (j/mileorn,			
3.00					-27	Координ	ата центра окружно	сти		
0.50				мм (не менее 0.01 мм)	2,7	Координ	ara gempa expyrine	5111		
0,00		ду точками	присунка,							
Профил	ь выпукло	ости:					10.00 -			
							0.00			
левая п	оловина	правая п	оловина				9,00 -			
X	Z	X	Z				8,00 -			
0,00	3,00	0,00	3,00				7,00 -			
-0,50	2,98	0,50	2,98				6.00 -			
-1,00	2,91	1,00	2,91				0,00			
-1,50	2,80	1,50	2,80				5,00 -			
-2,00	2,64	2,00	2,64				4,00 -			
-2,50	2,42	2,50	2,42				3,00			
-3,00	2,14	3,00	2,14				2.00			
-3,50	1,79	3,50	1,79				2,00 -			
-4,00	1,35	4,00	1,35			/	1,00 -			
-4,50	0,78	4,50	0,78	· · · · ·			0,00	1 1		
-5,00	0,00	5,00	0,00	-15,00-14,00-13,00-12,00-11,0	00-10,00 -9,00 -8,00 -7,00	-6,00 -5,00 -4	4,00 -3,00 -2,00 -1,00 0,	00 1,00 2,00	3,00 4,00 5,00 6,00	7,00 8,00
-5,50	0,00	5,50	0,00							

Рис.4. Форма профиля и рассчитанные значения координат виртуального эталона e=10мм, g=3мм.

МЭК изготавливали из углеродистой стали на высокоточном станке электроэрозионной резки Acctex A1600-SA. После изготовления МЭК были выполнены измерения фактических высот профиля в 5 сечениях. Измерения профиля выпуклости МЭК выполняли на трехкоординатноизмерительной машине (КИМ) GLOBAL модификации PERFOMANCE имеющей пределы допускаемой основной погрешности пространственных измерений с головкой PH10MQ-TP200 = \pm 1,7мкм, пределы допускаемой основной абсолютной погрешности с головкой PH10MQ-TP200 = 1,9мкм. Разрешающая способность

измерительной системы 0,039 мкм. Схема измерений профиля материального эталона e=20мм g=4мм приведена на рис. 5.

Рис.5. Схема измерения профиля МЭК е=20мм, g=4мм.

Измерения показали, что абсолютная погрешность отклонений координат 50 высот профилей сечений от расчетных значений, в пяти фиксированных сечениях, составляет ничтожно малую величину = 0,05мм. Данные результатов измерений свидетельствуют, что изготовленные МЭК в каждом поперечном сечении имеют профиль идентичный расчетному, а координаты высот в каждом сечении равны расчетным значениям в этих же точках.

Результаты измерения МЭК е=20мм, g=4мм приведены на рис 6.

Рис.6.Результат измерения профиля МЭК g=20мм, е=4мм

Суть калибровки лазерного сканера с применением МЭК состоит в сопоставлении формы профиля выпуклости МЭК, с измеренными лазерным сканером формами профилей выпуклости по его длине.

В процессе калибровки лазерного сканера выполнялось сканирование поверхности МЭК. Сканы МЭК е=20мм, g=4мм приведены на рис. 7.

Рис 7. Сканы МЭК, полученные лазерным сканером; а) е=20мм, g=4мм; б) е=10мм, g=3мм.

Определение метрологических характеристик лазерного сканера приведено ниже по тексту.

Определение погрешности измерения:

М - количество поперечных сечений МЭК;

N - количество точек в каждом сечении МЭК;

 $Z_{i,i}^{0}$ - истинная высота выпуклости в точках МЭК, где:

i = 1, ..., M - номера сечений;

j = 1, ..., N - номера точек в сечении;

D - расстояние между точками сканирования в сечении (шаг по *N*);
Общая площадь всех *M* сечений истинной площади выпуклости МЭК:

$$S^0 = D \sum_{i=1}^{M} \sum_{j=1}^{N} Z_{i,j}^0$$

При калибровке лазерный сканер выдал измеренные высоты выпуклости в тех же точках $Z_{i,j}$. Абсолютная погрешность измерения высоты в каждой точке равна $|Z_{i,j} - Z_{i,j}^0|$, а суммарная площадь отклонений сканированного профиля от площади МЭК, как вверх, так и вниз, составляет:

$$S = D \sum_{i=1}^{M} \sum_{j=1}^{N} |Z_{i,j} - Z_{i,j}^{0}|$$

Общая погрешность измерения, при сканировании пространственного объекта, характеризуется отношением суммарной площади отклонений скана от МЭК вверх и вниз к истинной площади сечений МЭК. Выраженная в процентах общая погрешность измерения составляет:

$$Err = 100 \frac{s}{s^0} \%$$

Обработка данных сканирования МЭК, по выше приведенному алгоритму, выполняется автоматически программой «calibrate».

В таблице 1 приведены результаты 10 экспериментов сканирования двух МЭК. Первые 6 строк – в стандартном режиме сканирования с включенным механизмом перемещения лазерного датчика вдоль МЭК. Последние 4 строки – при отключенном механизме перемещения лазерного датчика и многократными проходами - повторными сканированиями одного и того же сечения МЭК.

Таблица1.

Номер	Что сканировано	Коэффициент	Процент	Средняя	Средняя
эксперимента		масштабирования	абсолютного	абсолютная	абсолютная
		скана по высоте	отклонения	погрешность	погрешность
			площади скана	сканера по	сканера по
			от площади	высоте, мм	ширине, мм
			сечения		
			эталона		
1	Эталон 10х3 мм	1,025	1,1 %	0,028	0,023
	с механическим				
	перемещением				
	сечение № 1				
2	Эталон 10х3 мм	1,027	1,1 %	0,027	0,024
	с механическим				
	перемещением				
	сечение № 101				
3	Эталон 10х3 мм	1,023	1,0 %	0,026	0,025
	с механическим				
	перемещением				
	сечение №201				
4	Эталон 20х4 мм	1,015	0,8 %	0,025	0,039
	с механическим				
	перемещением				
	сечение № 2				
5	Эталон 20х4 мм	1,015	0,8 %	0,026	0,027
	с механическим				
	перемещением				
	сечение №102				
6	Эталон 20х4 мм	1,020	1,0 %	0,028	0,049
	с механическим				
	перемещением				
	сечение №180				

7	Эталон 10х3 мм без механического перемещения проход № 112	1,025	1,0 %	0,025	0,026
8	Эталон 10х3 мм без механического перемещения проход № 382	1,025	1,0 %	0,024	0,025
9	Эталон 20х4 мм без механического перемещения проход № 40	1,020	0,9 %	0,028	0,032
10	Эталон 20х4 мм без механического перемещения проход № 390	1,020	0,9 %	0,028	0,032

Определение неопределенности измерения:

Расчет неопределенности измерения лазерного сканера производится одновременно с расчетом погрешности с использованием вышеописанных исходных данных. Неопределенность измерения характеризуется шириной 95-процентного доверительного интервала в разбросе отклонений измеренных величин погрешности от среднего значения погрешности по точкам измерений.

Среднее значение погрешности по всем точкам измерений:

$$\bar{E} = \frac{1}{M \times N} \sum_{i=1}^{M} \sum_{j=1}^{N} \left(Z_{i,j} - Z_{i,j}^{0} \right)$$

Среднее квадратическое отклонение в разбросе отклонений измеренных величин погрешности от среднего значения погрешности по точкам измерений:

$$\sigma_{s} = \sqrt{\frac{1}{M \times N - 1} \sum_{i=1}^{M} \sum_{j=1}^{N} \left(\overline{E} - \left(Z_{i,j} - Z_{i,j}^{0} \right) \right)^{2}}$$

Полуширина доверительного интервала, в который попадают 95% измерений, равна $2\sigma_{\rm s}$. Длина отрезка равная $4\sigma_{\rm s}$ характеризует неопределенность измерения между нижней верхней границей И доверительного интервала:

$$\{\overline{E}-2\sigma_s;\overline{E}+2\sigma_s\}$$

В таблице 2 приведены результаты вычислений неопределенности измерений.

Эталон	Е, мм	σ _s , мм	N	2 σ _s	E - 2 σ _s	E + 2 σ _s	4бs max	
10х3 мм	0,001535068	0,037172815	57397	0,074	-0,073	0,076		
10х3мм	0,001302446	0,036045489	46263	0,072	-0,071	0,073		
10х3мм	0,00200658	0,034240775	46057	0,068	-0,066	0,070		
10х3мм	0,002026662	0,037419538	45598	0,075	-0 <i>,</i> 073	0,077	0,15	
20х4мм	0,00107992	0,035441116	113395	0,071	-0,070	0,072		
20х4мм	0,001193073	0,034543709	91667	0,069	-0 <i>,</i> 068	0,070		
20х4мм	0,00141634	0,035996926	91100	0,072	-0,071	0,073		

Выводы:

- 1. Результаты экспериментов показали, что абсолютная погрешность калибруемого лазерного сканера составила 1,1%, а фактическая неопределенность при 95-процентной надежности результата = 0,15мм.
- 2. Исследования физических свойств лазерных сканеров, при проведении многократных экспериментов по определению метрологических характеристик, определили значение целевой неопределенности=0,30мм.
- 3. Погрешность измерения лазерного сканера имеет большее значение при сканировании более «выпуклых» поверхностей сварных швов.
- 4. При определении ИКС необходимо учитывать погрешность измерения лазерного сканера.

Список литературы.

- Методика оценки практических навыков сварщиков с применением технологии 3DLD. Панков В.В., Панков С.В., Богородский И.Г. ООО «ДИЦ «МОСТ», г. Волгоград. «Сварка и контроль»: Электронное научное издание. – Уфа: УНПЦ «Издательство УГНТУ», 2022. – 144 с.
- Линейная калибровка лазерного сканера. Панков В.В. к.т.н., Панков С.В. к.т.н., Богородский И.Г. к.э.н., Аникин Д.А. (<u>https://3dld.ru/?p=1536</u>).